《分数基本性质》教学设计

时间:2024-07-09 18:21:31
《分数基本性质》教学设计

《分数基本性质》教学设计

在教学工作者实际的教学活动中,时常需要用到教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计要怎么写呢?下面是小编精心整理的《分数基本性质》教学设计,欢迎大家分享。

《分数基本性质》教学设计1

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

重点难点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。

教具学具: 课件,每人一张白纸,一张圆纸片,彩笔

教学时间:1课时

教学流程:

一、复习引入

1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?

120÷30=4

(120×3)÷(30×3)

=360÷90

=4

120÷30=4

(120÷10)÷(30÷10)

=12÷3

=4

在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

除法与分数之间有什么联系?

被除数÷ 除数=被除数/除数

教师板书:分数的基本性质

二、动手操作

(1)用分数表示涂色部分。

( )

( ) )

( ) )

①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。

②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)

③继续折成16份,看看原来的3/4现在又成了?(12/16)

(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!

(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16

(2)用分数表示涂色部分。

( ) )

( ) )

( ) )

根据上面的过程,你能得到一组相等的分数吗?

8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

三、发现规律

1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?

学生观察、思考,完成上面的图形,再在小组内交流。

学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。

3/4=6/8=12/16 8/12=4/6=2/3

从这些数字中可以得出:

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)

教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?

得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。

3、课件出一组分数让学生练习填

2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()

四、练一练(课件出示)

1、判断.(手势表示。)

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()

(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )

( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )

2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )

3、数学游戏(课件出示)

说出相等的分数 1/4和2/8

(1)你能根据分数的基本性质,再写出一组相等的分数?

所写的分数是否相等?你是怎样想的?

(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?

五、课本练习中的第1,2题。

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

七、板书设计:

3/4=3×2/4×2=6/8=6×2/8×2=12/16

8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

《分数基本性质》教学设计2

教学内容:人教版小学数学第十册第107页至108页。

教学目标:

1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。

教学准备:长方形纸片、彩笔、各种分数卡片。

教学过程

一、创设情境,激发兴趣

1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。

【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】

“同学们,猴王真的分得不公平吗?”

二、动手操作、导入新课

同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作 ……此处隐藏23225个字……学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

《分数基本性质》教学设计15

1.教材简析

《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

2.教材处理

以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。

设计意图:

本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。

1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

2、从故事情境中提出问题,体现数学来源于生活。

3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。

5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、

6、在游戏活动中对数学知识进行拓展运用。

教学目标

1.知识与技能

(1)经历探索分数的基本性质的过程,理解分数的基本性质。

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.过程与方法

(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

(2) 培养学生的观察、比较、归纳、总结概括能力。

(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.情感态度与价值观

(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

(2)体验数学与日常生活密切相关。

教学重点

理解分数的基本性质

教学难点

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学准备

师:电脑课件 学生:圆纸片 长方形纸

教学步骤:

一、故事引人,揭示课题。

1.教师讲故事。

话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”

唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?

[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

2、组织讨论,动手操作。

(1)小组讨论,谁分的多

(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。

(3)比较涂色部分的大小,有什么发现,得出什么结论。

既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

(4)教师演示

3、教学例1

(1)引导比较。

师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

你知道其中哪些分数是相等的吗?

根据学生回答板书:1/3=2/6=3/9

师追问:你是怎么知道这三个分数相等的?(图中观察出来的)

(2)师演示验证大小。

(3)完成“练一练”第1题

学生先涂色表示已知分数,再在右图中涂出相等部分。

完成填空后,说说怎么想的。

4、教学例2。

(1)组织操作。

师:取出正方形纸,先对折,用涂色部分表示它的1/2。

学生完成折纸、涂色。

师问:你能通过继续对折,找出和1/2相等的其它分数吗?

学生在小组中操作,教师巡视指导。

学生展开折法并汇报,可能出现的方法有:

连续对折两次,平均分成4份。如图:

1/2=1/4

②连续对折三次,平均分成8份。如图:

1/2=4/8

③连续对折四次,平均分成16份。

师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?

得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

板书:1/2=2/4=4/8=8/16=16/32……

(2)发现规律。

师:你有什么发现?(如学生观察有困难,可进行以下提示)

①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?

学生观察、思考,在小组中交流。

师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?

《《分数基本性质》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式